Hyperbolicity Criteria for Certain Involutions
نویسنده
چکیده
Using the ideas and techniques developed by Bayer-Fluckiger, Shapiro and Tignol about hyperbolic involutions of central simple algebras, criteria for the hyperbolicity of involutions of the form σ⊗ τ and σ⊗ ρ, where σ is an involution of a central simple algebra A, τ is the nontrivial automorphism of a quadratic extension of the center of A and ρ is an involution of a quaternion algebra are obtained. 2000 Mathematics Subject Classification: 16W10, 11E39
منابع مشابه
Hyperbolicity of Unitary Involutions
We prove the so-called Unitary Hyperbolicity Theorem, a result on hyperbolicity of unitary involutions. The analogous previously known results for the orthogonal and symplectic involutions are formal consequences of the unitary one. While the original proofs in the orthogonal and symplectic cases were based on the incompressibility of generalized Severi-Brauer varieties, the proof in the unitar...
متن کاملHyperbolicity of Orthogonal Involutions
We show that a non-hyperbolic orthogonal involution on a central simple algebra over a field of characteristic 6= 2 remains non-hyperbolic over some splitting field of the algebra.
متن کاملPattern avoidance and Boolean elements in the Bruhat order on involutions
We show that the principal order ideal of an element w in the Bruhat order on involutions in a symmetric group is a Boolean lattice if and only if w avoids the patterns 4321, 45312 and 456123. Similar criteria for signed permutations are also stated. Involutions with this property are enumerated with respect to natural statistics. In this context, a bijective correspondence with certain Motzkin...
متن کاملPattern Avoidance and the Bruhat Order on Involutions
We show that the principal order ideal below an element w in the Bruhat order on involutions in a symmetric group is a Boolean lattice if and only if w avoids the patterns 4321, 45312 and 456123. Similar criteria for signed permutations are also stated. Involutions with this property are enumerated with respect to natural statistics. In this context, a bijective correspondence with certain Motz...
متن کاملNew Criteria for Ergodicity and Non-uniform Hyperbolicity
In this work we obtain a new criterion to establish ergodicity and non-uniform hyperbolicity of smooth measures of diffeomorphisms. This method allows us to give a more accurate description of certain ergodic components. The use of this criterion in combination with topological devices such as blenders lets us obtain global ergodicity and abundance of non-zero Lyapunov exponents in some context...
متن کامل